Market Structure and Innovation: A Dynamic Analysis of the Global Automobile Industry

Aamir Rafique Hashmi ¹ Jo Van Biesebroeck ²

¹National University of Singapore

²K.U.Leuven, NBER, and CEPR

FTC/Northwestern workshop – Washington, D.C. November 19, 2009

The Question

What is the relationship between market structure and innovation?

- Extensively studied in the literature since Schumpeter (1942)
 - "— the large-scale establishment or unit of control ... has come to be the most powerful engine of ... progress and in particular of the long-run expansion of output...
 - ... perfect competition is not only impossible but also inferior, and has no title to being set up as a model of ideal efficiency." [p.106]
- "The second most tested set of hypotheses in IO..."[Aghion and Tirole (QJE, 1994)]

Existing Studies

- ▶ Older studies are mostly reduced form: Regress a measure of innovation (e.g. R&D expenditures, patent count,...) on a measure of market power (e.g. mark-up, Herfindhal,...) [surveyed by Kamien-Schwartz (1975, 1982), Cohen-Levin (1989), Ahn (2002), Aghion-Griffith (2005) and Gilbert (2006)]
- ➤ A few recent applications estimate a dynamic game: Xu (2008): electric motors in Korea Goettler & Gordon (2008): Intel v. AMD Siebert & Zulehner (2008): DRAM

In this Study

- ► We study the global automobile industry
 - \Rightarrow one of the most innovative
- ▶ Dramatic changes in market structure
 - \Rightarrow allow for mergers

Objectives of the Study

- 1. To construct a dynamic model of the global automobile industry and estimate primitives
 - Including mergers
 - Estimation is based on Bajari, Benkard, & Levin (2007)
 - \Rightarrow dynamic game with continuous control variable

Objectives of the Study

- To construct a dynamic model of the global automobile industry and estimate primitives
 - Including mergers
 - Estimation is based on Bajari, Benkard, & Levin (2007)
 - \Rightarrow dynamic game with continuous control variable
- 2. Characterize the different incentives for innovation:
 - Boost own demand
 - Affect innovation decision of competitors
 - Increase ownership share in (possible) future mergers

Objectives of the Study

- 1. To construct a dynamic model of the global automobile industry and estimate primitives
 - Including mergers
 - Estimation is based on Bajari, Benkard, & Levin (2007)
 - \Rightarrow dynamic game with continuous control variable
- Characterize the different incentives for innovation:
 - Boost own demand
 - Affect innovation decision of competitors
 - Increase ownership share in (possible) future mergers
- Study how changes in market structure (organic or discrete) affect innovation incentives, firm value and consumer utility
 - (Perform counterfactual experiments)

Demand Side Ingredients

- ▶ Each firm possesses some technological knowledge $\omega \in \mathbb{R}^+$ (observable state variable)
- ▶ Each product has some unobserved characteristics summarized in $\xi \in \mathbb{R}$ (unobservable state variable)
- Industry state is $\mathbf{s} = \{\mathbf{s}_{\omega}, \mathbf{s}_{\xi}, m\}$ Where $\mathbf{s}_{\omega} = [\omega_1 \ \omega_2 \ \dots \ \omega_n]$ and $\mathbf{s}_{\xi} = [\xi_1 \ \xi_2 \ \dots \ \xi_n]$

Expected Demand

▶ The utility consumer i gets from good j is

$$u_{ij} = \theta_{\omega} \log(\omega_j + 1) + \theta_{\rho} \log(\rho_j) + \xi_j + \nu_{ij} \equiv \tilde{u}_j + \nu_{ij}$$

 ν_{ij} is the idiosyncratic utility assumed to follow an i.i.d. extreme value distribution

Data

Firm-year observations:

- ▶ Patent data from 1975 to 2005
 - $\omega_{1981} = \text{sum of patents issued between 1975 and 1981}$
 - $\omega_{1982} = (1 \delta)\omega_{1981} + \text{new patents issued in } 1982$
- Price and market share information from 1982 to 2005
 - Price: firm dummies from hedonic price regressions
 - Share: in terms of vehicles produced

Step 1: Estimation of Demand Parameters

Dependent variable: log sales relative to GM

	OLS	IV	IV
$ heta_\omega$	0.421***	0.420***	0.562***
	(0.014)	(0.017)	(0.081)
$\theta_{m{ ho}}$	-2.313****	-2.185^{***}	-7.300***
	(0.188)	(0.626)	(2.860)
Time Fixed-Effects	No	No	Yes

Supply Side Timing

In each period the sequence of events is the following.

- 1. Firms observe individual and industry states.
- 2. Pricing and investment decisions are made.
- 3. Profits and investment outcomes are realized.
- 4. Individual and industry states are updated.
- 5. Mergers take place (if any).
- 6. State variables of merged firms are updated.

Profit Function

Period profit function

$$\pi_j(\omega_j, \xi_j, \mathbf{s}^{-j}) = \max_{p_j} \{ [p_j - \text{MC}_j(\omega_j, \xi_j)] m \sigma_j(\cdot) - \text{FC}_j \}.$$

▶ f.o.c.

$$p_j + \theta_p(p_j - MC_j(\omega_j, \xi_j))(1 - \sigma_j(\cdot)) = 0.$$

Step 1: Estimation of (Production) Cost Parameters

Dep. variable: log of marginal cost (recovered from f.o.c. system)

	γ_0	γ_1	γ_{11}	γ_2	γ_{22}
(1) constant	1.070***				
	(800.0)				
(2) linear-log	0.607***	0.017***		0.346***	
	(0.044)	(0.003)		(0.029)	
(3) quadratic	1.034***	0.256***	-0.165^{***}	0.107***	0.007
	(0.011)	(0.035)	(0.021)	(0.007)	(0.005)

(2)
$$MC_j = \gamma_0 + \gamma_1 \log(\omega_j/\omega_{GM}) + \gamma_2 \log(\xi_j/\xi_{GM}) + \varepsilon$$

(3)
$$MC_j = \gamma_0 + \gamma_1 \tilde{\omega}_j + \gamma_{11} \tilde{\omega}_j^2 + \gamma_2 \tilde{\xi}_j + \gamma_{22} \tilde{\xi}_j^2 + \varepsilon$$

The Dynamic Problem

▶ The Bellman equation is

$$V_{j}(\omega_{j}, \xi_{j}, \mathbf{s}^{-j}) = \max_{\mathsf{x}_{i} \in \mathbb{R}^{+}} \{ \pi_{j}(\omega_{j}, \xi_{j}, \mathbf{s}^{-j}) - c\mathsf{x}_{j} + \beta \mathsf{E} V_{j}(\omega_{j}^{'}, \xi_{j}^{'}, \mathbf{s}^{'-j}) \},$$

where x is the control variable (level of R&D or number of patents a firm applies for).

Laws of Motion

Laws of motion for the state variables

$$\omega_j' = (1 - \delta)\omega_j + x_j + \epsilon_{\omega j},$$

 ϵ_{ω} captures the randomness in the innovation process.

$$\xi'_{j} = \xi_{0} + \rho(\xi_{j} - \xi_{0}) + \epsilon_{\xi},$$

AR(1) process with fixed effects

Step 1: State Transition Function

$$lacksquare$$
 $\omega' = (1 - \delta)\omega + x(1 + \epsilon_{\omega}), \quad \text{where } \epsilon_{\omega} \sim N(0, \sigma_{\epsilon_{\omega}}).$

$$lacktriangle$$
 We set $\delta=0.15$ and $\sigma_{\epsilon_\omega}=0.1$

Step 1: State Transition Function

- lacksquare $\omega' = (1 \delta)\omega + x(1 + \epsilon_{\omega}), \quad \text{where } \epsilon_{\omega} \sim N(0, \sigma_{\epsilon_{\omega}}).$
- $lackbox{We set } \delta = 0.15 \ {
 m and} \ \sigma_{\epsilon_\omega} = 0.1$
- $\xi'_j = \xi_0 + \rho(\xi_j \xi_0) + \epsilon_{\xi}$
- ▶ We set ξ_0 at the average of ξ_j over the 1982–2005 period
- ightharpoonup and we estimate ho=0.597 (0.036) and $\epsilon_{\xi}=0.193$

Allowing for Mergers

In an industry with two firms, A and B, with an exogenous probability of merging p_m , the value function for firm A will be:

$$V_{A}(\omega_{A}, \xi_{A}, \omega_{B}, \xi_{B}) = \max_{x_{A} \in \mathbb{R}^{+}} \left\{ \pi_{A}(\cdot) - cx_{A} + \beta \left[p_{m} \zeta_{A}(\cdot) EV_{AB}(\omega'_{A} + \omega'_{B}, (\xi'_{A} + \xi'_{B})/2) + (1 - p_{m}) EV_{A}(\omega'_{A}, \xi'_{A}, \omega'_{B}, \xi'_{B}) \right] \right\},$$

where

$$\zeta_A(\cdot) = \frac{E\tilde{V}_A(\omega_A', \xi_A', \omega_B', \xi_B')}{E\tilde{V}_A(\omega_A', \xi_A', \omega_B', \xi_B') + E\tilde{V}_B(\omega_B', \xi_B', \omega_A', \xi_A')}.$$

is the share of firm A in the total value of the merged firm.

Markov Perfect Equilibrium

Estimation Methodology

- ► Two-step procedure due to Bajari, Benkard and Levin (2007)
- Key assumption: The observed data represent a Markov Perfect Equilibrium

Estimation Methodology

- ► Two-step procedure due to Bajari, Benkard and Levin (2007)
- Key assumption: The observed data represent a Markov Perfect Equilibrium
- ▶ Step 1:
 - (i) Estimate parameters in (period) profit function;
 - (ii) Estimate policy functions and state transitions from the data;
 - (iii) Forward simulate the value functions.

Estimation Methodology

- ► Two-step procedure due to Bajari, Benkard and Levin (2007)
- Key assumption: The observed data represent a Markov Perfect Equilibrium
- ► Step 1:
 - (i) Estimate parameters in (period) profit function;
 - (ii) Estimate policy functions and state transitions from the data;
 - (iii) Forward simulate the value functions.
- Step 2: Use equilibrium conditions to recover dynamic parameters of the model

Step 1: Estimation of Policy Function

$$x_{j} = \sum_{k=0}^{3} \sum_{l=0}^{3-k} \sum_{m=0}^{3-k-m} \alpha_{klm}(\omega_{j})^{k} (\sum \omega_{-j})^{l} (\xi_{j})^{m} + e_{j},$$

where e_j is approximation error from true policy function $R^2 = 0.898$

Step 1: Putting it all together

Estimated demand and supply parameters allow us to calculate $\pi_j(\omega_j, \xi_j, \mathbf{s}^{-j})$ for any $(\omega_j, \xi_j, \mathbf{s}^{-j})$ (need to solve $n \times n$ system of nonlinear equations)

Step 1: Putting it all together

- Estimated demand and supply parameters allow us to calculate $\pi_j(\omega_j, \xi_j, \mathbf{s}^{-j})$ for any $(\omega_j, \xi_j, \mathbf{s}^{-j})$ (need to solve $n \times n$ system of nonlinear equations)
- Estimated policy and transition functions similarly give us $x_j(\omega_j, \xi_j, \mathbf{s}^{-j})$ and $(\omega_j', \xi_j', \mathbf{s}^{-j})$ for any $(\omega_j, \xi_j, \mathbf{s}^{-j})$

Step 1: Putting it all together

- Estimated demand and supply parameters allow us to calculate $\pi_j(\omega_j, \xi_j, \mathbf{s}^{-j})$ for any $(\omega_j, \xi_j, \mathbf{s}^{-j})$ (need to solve $n \times n$ system of nonlinear equations)
- Estimated policy and transition functions similarly give us $x_j(\omega_j, \xi_j, \mathbf{s}^{-j})$ and $(\omega_i', \xi_i', \mathbf{s}^{'-j})$ for any $(\omega_j, \xi_j, \mathbf{s}^{-j})$
- ▶ Use all these to forward simulate the value function from $(\omega_{j0}, \xi_{j0}, s_0^{-j})$:

$$V(\omega_{j0}, \xi_{j0}, s_0^{-j}) = [\pi(\omega_{j0}, \xi_{j0}, s_0^{-j}) - cx(\omega_{j0}, \xi_{j0}, s_0^{-j})] + \beta[\pi(\omega_{j1}, \xi_{j1}, s_1^{-j}) - cx(\omega_{j1}, \xi_{j1}, s_1^{-j})] + \beta^2[\pi(\omega_{j2}, \xi_{j2}, s_2^{-j}) - cx(\omega_{j2}, \xi_{j2}, s_2^{-j})] + \dots$$

ho $\beta = 0.92$; use 150 periods

Estimation: Step 2

▶ If the observed policy profile x is a MPE, it must be true that for all firms, all states, and all alternative policy profiles x':

$$V(j,s,x|c) \geq V(j,s,x'|c).$$

Simulate alternative value functions using x' policies: $\mathbf{x}'(\mathbf{s}) = (\iota + ae_j)'\mathbf{x}(\mathbf{s})$ (one firm invests (1+a)x, while competitors follow x policy); we used $a \in \{-0.10, -0.08, \dots, -0.02, 0.02, \dots, 0.08, 0.10\}$

Estimation: Step 2

Define

$$d(j, s, x'|c) = V(j, s, x|c) - V(j, s, x'|c)$$
 (1)

▶ The minimum distance estimator of c is

$$\min_{c} \sum_{j,s,x'} (\min\{d(j,s,x'|c),0\})^2$$
 (2)

- $\hat{c} = \$41.1$ m if MC is constant (benchmark)
- ► R&D-(granted) Patent ratio in the data: mean = \$15.6m; median = \$14.9m

c estimates: model sensitivity

How high a c discourages R&D enough to fit the patent data?

Varying demand		Varying policy	
IV	41.1	non-parametric	41.1
OLS	39.3	restricted (8 terms)	24.5
IV with FE	25.5	non-parametric in logs	40.3

Varying MC		Varying ξ_{A+B}		
constant	41.1	average A & B	41.1	
quadratic	31.5	maximum A or B	46.6	
log-linear	40.6	ω -weighted average	42.4	

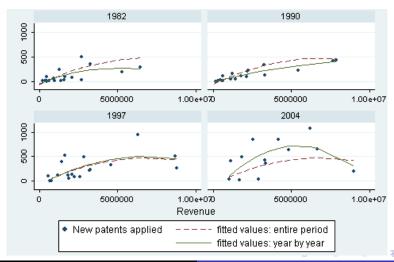
c estimates: parameter sensitivity

Disco	unt factor	Deprec	Depreciation rate		EU-US patent ratio	
0.92	41.1	0.15	41.1	2.2	41.1	
0.90	40.1	0.05	10.6	1.0	48.1	
0.94	43.5	0.25	56.3	3.0	40.0	

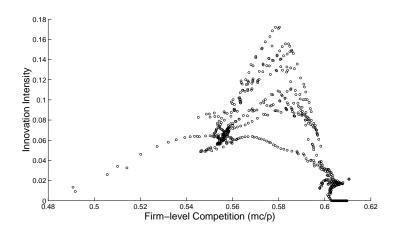
Competition and Innovation: Industry-Level (across time)



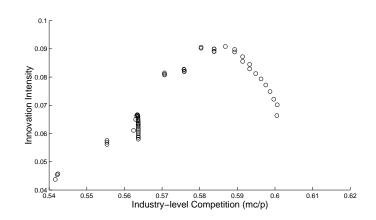
Competition and Innovation: Firm-Level (across firms)



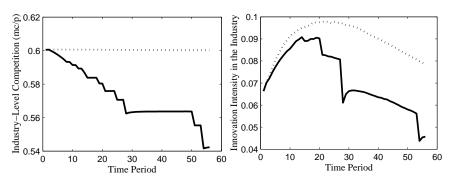
Competition and Innovation: Firm-Level ($t_0 = 1982$)



Competition and Innovation: Industry-Level ($t_0 = 1982$)

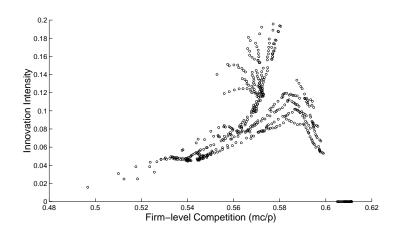


Understanding the Inverted-U

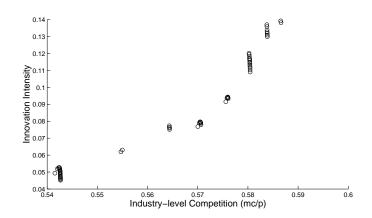


(dotted lines represent the evolution without mergers)

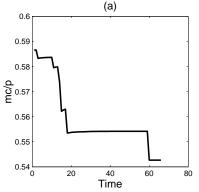
Competition and Innovation: Firm-Level ($t_0 = 2004$)

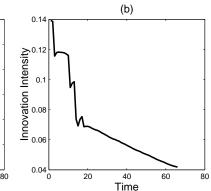


Competition and Innovation: Industry-Level ($t_0 = 2004$)



Understanding the Positive Relationship





Competition and Innovation: Counterfactual exercises

In the works now

- need to solve equilibrium for this
- without ξ state, but with mergers, feasible for N=4

Conclusions

- We estimate a dynamic model of the global automobile industry to study how changes in market structure affect innovative activity, firm value and consumer utility
- Simulation results suggest that there is an inverted-U relationship between market concentration and innovative activity, at least if the initial industry state is not too concentrated.